Parallelization in LIS

Sujay Kumar Jim Geiger

Land Information System (LIS)
Annual Team Meeting
21 January 2003

1

Outline

- 1. Background
- 2. Baselining Performance Results
- 3. Current Design
- 4. Current Performance Results
- 5. Planned Work

Background: Components of LIS

- High resolution LDAS driving multiple LSMs
- Data management system
- Web-based user interface

Background: Main Goal

• A Global Land Data Assimilation System at high resolution (up to 1km) for near real-time land surface modeling

Problem

- Computational requirements significantly increase at domains of high resolution
 - Approximately 2 months to simulate 1 day at 15 minute timestep globally at 1km

Background: Approach/Goals

- Use of scalable, massively parallel computing infrastructure for performance improvement
- Exploit weak horizontal coupling of global land surface processes
- Performance target
 - Achieve 1 ms / gridcell / day at 5 km (Mar 2003)
 - Achieve 0.4 ms / gridcell / day at 1 km (Feb 2004)

Baselining Performance Results

- GLDAS baseline simulations on ESS Testbed were demonstrated as part of July 2002 performance milestone.
 - CLM, NOAH at 1/4 deg.

Baselining Performance Results

- Overall performance
 - CLM: 5–6 ms / grid cell / day
 - NOAH: 5–6 ms / gridcell / day
- Identified "time-hog" routines
 - Time / space interpolation of forcing data
 - Land surface model runs
 - Output

Current Design

- LIS uses a "pool of tasks" approach to exploit loop-based parallelism.
 - Pros
 - * Provides automatic load balancing
 - \ast Centralized preprocessing and initializations
 - * Platform independent
 - Cons
 - * Communication overhead
 - * Potential bottleneck at the master node

Current Performance Results

- Parallelized:
 - Time and space interpolation
 - Tile loop of NOAH runs
- Overall performance:
 - Linear speedup in individual routines that are parallelized
 - However, the individual computational tasks are fine grained and hence communication overhead becomes significant enough to offset these improvements
 - Parallel runs ~ 4 ms / grid cell / day at 1/4 degree resolution

Planned Work

- Investigating approaches to reduce communication overheads
 - Use collective communication
 - Move towards a static task distribution model
 - Locally host data on compute nodes